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Abstract

In order to construct an integrable system on the moduli space Hom(π1(S),G)/G of a punctured sphere S, we establish a
morphism between two interesting quasi-Poisson G-manifolds, Gn and a subspace g̃n of the loop algebra of g. In particular, we
prove a useful result about reduction in the quasi-Poisson context and we describe the construction of a quasi-Poisson structure
coming from a Lie algebra splitting.
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1. Introduction

The moduli space of flat connections on a trivial principal bundle over a Riemann surface is a natural object that
has been studied for a long time, in particular by Atiyah and Bott in [4]. S is a compact, connected and oriented
surface which may have n marked points and whose genus is g. Let G be a Lie group whose Lie algebra g admits
a non-degenerate and ad-invariant symmetric bilinear form B. The moduli space M is the quotient of the space
Afl ' Ω1(S, g), of flat connections of the trivial bundle S × G, under the action of the gauge group G ' C∞(S,G),
of automorphisms on the bundle.

Assign to each flat connection its holonomy along a loop on S. This will give you a homomorphism π1(S) → G
which is well defined up to conjugacy by elements of G. There is thus a natural and well-known one-to-one
correspondence between the moduli space M and the quotient Hom(π1(S),G)/G. Since the fundamental group
π1(S) is the group generated by 2g + n elements subject to the single relation

∏g
i=1 ai bi a−1

i b−1
i
∏n

j=1 m j = e, the
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space Hom(π1(S),G)/G is the quotient of the subset

N :=

{
(A1, B1, . . . ,M1, . . .) ∈ G2g+n

∣∣∣∣∣
g∏

i=1

Ai Bi A−1
i B−1

i

n∏
j=1

M j = e

}

by the simultaneous conjugation by elements of G. This quotient is denoted by G2g+n//G, so that M ' G2g+n//G.
In particular, the singular variety M is finite-dimensional.

In 1982, Atiyah and Bott construct, in [4], a symplectic structure on the smooth part of M = Afl/G , in the case
where n = 0, by reduction of the symplectic form ω(ϕ,ψ) =

∫
S B ◦ (ϕ ∧ ψ) defined on the infinite-dimensional

space of connections A on the trivial bundle S × G.
In 1992, Fock and Rosly make, in [9,8], a finite-dimensional construction of a Poisson structure on M in the case

where n > 0. They show that the symplectic leaves are obtained by fixing the conjugacy classes of the holonomies
around the n marked points.

In 1994, Alekseev constructs, in [3], for arbitrary g ≥ 0 and n ≥ 0, a quantized algebra of functions on M . It is
generated by the entries of the monodromy matrices M1, . . . ,Mn, A1, B1, . . . , Ag, Bg ∈ G ⊂ GL(N ) and subject to
the quadratic relations:

R−X1
i ∗ R−1

− X2
i = X2

i R+ ∗ X1
i R−1
+ ,

R+X1
i ∗ R−1

+ X2
j = X2

j R+ ∗ X1
i R−1
+ if i < j,

R+A1
i ∗ R−1

− B2
i = B2

i R+ ∗ A1
i R−1
+ ,

where R± are two quantum R-matrices, X1
i := X i ⊗ 1 and X2

i := 1⊗ X i . In the classical limit, this non-commutative
product becomes a quadratic Poisson bracket on Gn+2g , defined with two classical r -matrices r±. In a tensorial
formalism, it reads{

X i
⊗, X i

}
= −r−X1

i X2
i − X2

i X1
i r+ + X1

i r−X2
i + X2

i r+X1
i ,{

X i
⊗, X j

}
= −r+X1

i X2
j − X2

j X1
i r+ + X1

i r+X2
j + X2

jr+X1
i if i < j,{

Ai
⊗, Bi

}
= −r+A1

i B2
i − B2

i A1
i r+ + A1

i r−B2
i + B2

i r+A1
i .

(1)

This Poisson structure on Gn+2g restricts itself to the set of G-invariant functions, and hence leads to a Poisson
structure on the quotient Gn+2g//G. It coincides with Atiyah and Bott’s in the case n = 0 and with Fock and Rosly’s
when n > 0.

One of the aims of Alekseev in [3] was to construct a quantum integrable system on the moduli space M =

Gn+2g//G. To do this, he introduces, for g = 0 and G ⊂ GL(N ), the equivariant transfer map depending on a spectral
parameter λ,

T : Gn
−→ gl(N )[λ]

M = (M1, . . . ,Mn) 7−→ TM (λ) := (M1 + λId) . . . (Mn + λId).

He observes that the q-trace FM (λ) = trq TM (λ) of the transfer map provides a family of commuting G-invariant
elements of the quantized algebra. In the classical limit, it leads to Poisson commuting functions on M . The
calculation of independent functions thus defined shows that they form a classical integrable system when G = SU(2)
and g = 0.

In this paper we will construct an integrable system on M when G = GL(N ) and g = 0, taking Alekseev’s
work as a starting point. Note that there exist other constructions of integrable systems on the moduli space M ;
see e.g. Goldmann [11], Jeffrey and Weitsman [12]. We are not going to talk about these works which are totally
independent from the techniques that we will use here.

The choice of functions on M seems clear. Indeed, a large family of functions on Gn which is natural to consider
consists of the pull-backs T ∗Fk,a of the traces Fk,a(X) := tr X k(a), k ∈ N, a ∈ C, where X = X (λ) belongs to
gl(N )[λ].

What is less obvious is how to show on the one hand that these functions Poisson commute and on the other hand
that they provide enough independent functions to insure integrability. To this end, it is easier to work, on the one
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hand on Gn , rather than M = Gn//G, and on the other hand on the ambient space g̃n , the subspace of gl(N )[λ] of
polynomial matrices of degree less than n + 1. When everything is clear there, we consider the quotients under the
action of G.

A list of observations and problems appears:

(a) Through the Poisson structure {· , ·} on Gn , defined by (1), the functions Fk,a give the following Hamiltonian
vector fields:

XT ∗Fk,a :
˙TM (λ) = −2kλ

[
TM (λ), T k

M (a)
]

λ− a
. (2)

These vector fields are very similar to the well-known integrable vector fields on g̃n , that were discovered
independently by several authors (see e.g. [10,5]):

Yk,a : Ẋ(λ) = c(a)

[
X (λ), X k(a)

]
λ− a

, (3)

where c(a) depends on a only, in contrast to the coefficient in (2), which depends on λ. To use this, we gingerly
alter the transfer map T and define

T : Gn
−→ g̃n

M = (M1, . . . ,Mn) 7−→ TM (λ) = (λM1 + Id) . . . (λMn + Id).

Then the Hamiltonian vector fields are exactly given by the formula

XT ∗Fk,a : ṪM (λ) = 2ka

[
TM (λ),T

k
M (a)

]
λ− a

, (4)

which is on the form (3).
(b) Unfortunately, neither of T nor T is a Poisson map, for any known Poisson structures on g̃n . Could we find a new

Poisson structure on g̃n such that the transfer map T becomes a Poisson morphism? A necessary condition, for
such a structure, would be that the Hamiltonian vector fields coming from the functions tr X k(a), k ∈ N, should
be Yk,a . However, the known linear structures all give Yk−1,a (up to a constant).

(c) Beauville shows in [5] that the Hamiltonian vector fields (3) yield an integrable system on the quotient g̃n/G. But,
for our purpose, we need to know: is its restriction to the image of T in g̃n/G still an integrable system?

(d) Granted (b) and (c), do the Hamiltonian vector fields XT ∗Fk,a , k ∈ N, a ∈ C, form an integrable system on the
moduli space?

These questions will be answered on this paper.
In the search for the Poisson structure answering the question (b), we follow Li and Parmentier’s construction

of quadratic Poisson structure on an associative Lie algebra [14], using R-matrices. It is the object of Section 3.
Among the quadratic bivector fields thus obtained, precisely one, denoted as {· , ·}Q1 , satisfies the necessary condition
demanded in (b). However it is not a Poisson structure, since the R-matrix used does not satisfy Li and Parmentier’s
condition. In particular, {· , ·}Q1 is not the image of the Poisson structure {· , ·} via T .

However, it turns out that there is a bivector field {· , ·}n on Gn which is mapped by T to {· , ·}Q1 ! It was
constructed by Alekseev, Kosmann-Schwarzbach and Meinrenken as an example of what they call a quasi-Poisson
structure (see [2]). By definition, a quasi-Poisson G-manifold is a manifold M , on which a Lie group G acts, and is
equipped with a G-invariant bivector field {· , ·}, satisfying, instead of the Jacobi identity, { f1, { f2, f3}} + 	1,2,3 =

2φM [ f1, f2, f3], where φ is the Cartan 3-tensor of the Lie algebra of G. Technically less constraining, a quasi-Poisson
structure offers the same possibilities as a Poisson structure: Hamiltonian vector fields, morphisms, submanifolds, . . . .
Through the quasi-Poisson bivector field {· , ·}n , the functions tr T k(a) still have the vector fields XT ∗Fk,a given by
the formula (4), as Hamiltonian vector fields.

On the other side of the transfer map, we show in Section 4 that the quadratic bivector field {· , ·}Q1 , which answers
question (b), surprises us by being also a quasi-Poisson structure on g̃n! Hence, in particular, the morphism T is a
quasi-Poisson morphism.

But what happens on the quotients? Quasi-Poisson structures, as Poisson structures, have a nice property for
reduction: under a tangency condition, the quotient by G of a submanifold of a quasi-Poisson G-manifold inherits a
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(genuine!) Poisson structure. We show this result in Section 2, after a brief reminder about the quasi-Poisson manifold.
Applying this to Gn and g̃n , we show, in Section 5, that the quotients Gn//G and A /G inherit Poisson structures,
where

A :=
{
Idλn
+ λY (λ)+ Id ∈ g̃n | Y (λ) ∈ g̃n−2

}
.

In particular, the Poisson bivector field on Gn//G is the same as Alekseev’s in [3]. The G-invariant transfer map T
induces hence a Poisson map TG : Gn//G 7→ A /G.

What about the integrable system? We show that Beauville’s integrable system, equipped with the Poisson structure,
that comes from our quasi-Poisson structure on g̃n , is still an integrable system on A /G. On the other hand, we show,
in Section 6, that the Poisson map TG induces a local diffeomorphism. This allows us to conclude that, as hoped, the
family of functions F := (trT k(a))k∈N,a∈C is an integrable system on M .

Notice that, as a by-product of our search for an integrable system on the moduli space M , we found a new
non-trivial example of a quasi-Poisson structure, namely the quadratic bracket {· , ·}Q1 on the loop algebra g. The
understanding of our construction of this quasi-Poisson manifold allows us to formalize it in the more general context
of a Lie algebra splitting g = g+ ⊕ g0 ⊕ g− of an associative algebra. This result is detailed in Section 7. As an
example, we find an alternative construction for Adler’s quadratic structure for the Toda lattice [1].

As a final note, we would like to mention that our work leads to several interesting questions. First of all, throughout
this paper, we restrict ourselves to the case of g = 0. The question of constructing an integrable system on a surface
with positive genus comes up. Secondly, we also restrict ourselves to the linear group G = GL(N ,C). It allowed us
to work in its Lie algebra gl(N ,C) which is an associative algebra. What could we do with other classical Lie groups
G? And what about the algebraic geometry of our integrable system on the moduli space? Last but not least: do other
known examples of quadratic Poisson structure fit in our general framework of quasi-Poisson manifolds?

2. Quasi-Poisson structure on Gn

This section is a short reminder about quasi-Poisson structures introduced by Alekseev, Kosmann-Schwarzbach and
Meinrenken in [2]. At the end, we give an adaptation of a Poisson reduction theorem from Pedroni and Vanhaecke [15]
to the case of a quasi-Poisson structure. Let us denote by [· , ·]S the Schouten bracket on multivector fields. Recall that
a Poisson structure on a manifold M is a bivector field P = {· , ·} on M such that [P, P]S = 0, i.e. a skew-symmetric
biderivation on F(M) = C∞(M) satisfying the Jacobi identity: for f1, f2, f3 ∈ F(M)

{ f1, { f2, f3}} +	1,2,3 = 0, (5)

where { f1, { f2, f3}} +	1,2,3 = { f1, { f2, f3}} + { f2, { f3, f1}} + { f3, { f1, f2}}.
Let G be a Lie group with Lie algebra g. We will assume throughout this text that the Lie algebra g is finite-

dimensional and admits a symmetric, non-degenerate, ad-invariant bilinear form 〈·|·〉. The non-degenerate form 〈·|·〉
allows us to identify

∧k g∗ and
∧k g. In particular, let us denote by φ the Cartan 3-form

φ : g3
−→ C

(x, y, z) 7−→
1
2
〈x | [y, z]〉

which we usually think of as an element of
∧3 g: If (ea)a∈I and (εa)a∈I are two dual bases of g (i.e. for all a, b ∈ I ,

〈ea |εb〉 = δa,b), then

φ =
1

12

∑
a,b,c∈I

〈εa | [εb, εc]〉 ea ∧ eb ∧ ec.

If M is a G-manifold, then for any x ∈ g , the fundamental vector field xM on M is defined by xM [ f ](m) =
d
dt |t=0

f (exp(t x) · m), for m ∈ M and f ∈ F(M).
More generally, the k-vector field on M associated with a k-tensor α ∈

∧k g is denoted by αM . A bivector field P
on M is said G-invariant if ∀x ∈ g , LxM P = 0.
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Definition 1 ([2]). Let M be a G-manifold where G is a Lie group whose Lie algebra g admits a symmetric, non-
degenerate, ad-invariant bilinear form. A bivector field P = {· , ·} on M is called a quasi-Poisson structure on M if it
is G-invariant and [P, P]S = φM . Then M , or (M, P), is called a quasi-Poisson G-manifold. This means that, instead
of the Jacobi identity (5), the biderivation P satisfies, for arbitrary elements f1, f2, f3 ∈ F(M),

{ f1, { f2, f3}} +	1,2,3 = 2φM [ f1, f2, f3].

A quasi-Poisson map between two quasi-Poisson G-manifolds (M, {· , ·}) and (M ′, {· , ·}′) is a G-equivariant map
F : M → N satisfying, for f1, f2 ∈ F(M ′), {F∗ f1, F∗ f2} = F∗ { f1, f2}

′.

Example 2. For a G-manifold M , with G abelian, the notions of Poisson structure and quasi-Poisson structure
coincide, as φ = 0.

Example 3. The first non-trivial and fundamental example of a quasi-Poisson manifold is the G-manifold G where
the action is given by conjugation. For x ∈ g , let us denote by←−x and −−→x (rather than xG which we reserve for
the conjugation) the fundamental vector field for the respective left actions a 7→ ga (left translation) and a 7→ ag−1

(right translation). For x ∈ g the fundamental vector field for the conjugation is xG =
←−x −−→x . The bivector field

PG =
1
2

∑
a

←−ea ∧
−→εa

is a quasi-Poisson structure on G for the conjugation of G on itself. Indeed, using the properties of the Schouten
bracket and the identities

[
←−x ,−→y

]
= 0,

[
←−x ,←−y

]
=
←−−−[x, y] and

[
−→x ,−→y

]
= −
−−−→[x, y], one finds

[PG , PG]S =
1
4

∑
ab

←−−−−[ea, eb] ∧ −→εa ∧
−→εb +

←−ea ∧
←−eb ∧

−−−−→[εa, εb]

=
1
4

∑
abc

〈εa | [εb, εc]〉 (←−ec ∧
−→ea ∧

−→eb +
←−ea ∧

←−eb ∧
−→ec )

=
1
12

∑
abc

〈εa | [εb, εc]〉 (←−ea −
−→ea ) ∧ (

←−eb −
−→eb ) ∧ (

←−ec −
−→ec )

= φG

where we have used in the penultimate step that←−φ − −→φ = 0, which follows from the fact that φ is adg-invariant.
The same kind of formula proves that ∀x ∈ g , [xG , PG]S = 0, such that the bivector field PG is G-invariant. The
quasi-Poisson G-manifold (G, PG) does not depend on the choice of the basis (ea)a∈I . It will be referred to as the
canonical quasi-Poisson structure on G.

This example of a quasi-Poisson G-manifold uses a canonical term
∑

a
←−ea ∧

−→εa constructed with the fundamental
vector fields of two different actions of G on itself. This is a particular case of a more general result due to Alekseev,
Kosmann-Schwarzbach and Meinrenken, which allows us to construct a quasi-Poisson G-manifold from a quasi-
Poisson (G × G)-manifold ([2, theorem 5.1]). This technique, given by the following proposition, is called fusion.

Proposition 4 ([2]). Let (M, P) be a quasi-Poisson (G × G)-manifold. For x ∈ g , let us denote by x1
M and x2

M the
fundamental vector fields associated with x1

= (x, 0) and x2
= (0, x), in g⊕g , by the actions of G×{e} and {e}×G

respectively. The bivector field

Pfus := P − ψM := P −
1
2

∑
a

ea1
M
∧ εa2

M

defines on M the structure of a quasi-Poisson G-manifold with respect to the diagonal action

G × M → (G × G)× M → M

(g,m) 7→ ((g, g),m) 7→ (g, g) · m.

This proposition allows us, on the one hand, to construct quasi-Poisson G-manifolds and, on the other hand, to
recognize quasi-Poisson structures, when they come from fusion. We will use such an argument in Section 4.
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Example 5. As suggested before, the Example 3 is a fusion: G is a (G × G)-manifold for the left and the right
translations. The image of the Cartan 3-tensor φ2 = (φ, φ) of g × g under this action is ←−φ − −→φ = 0. Hence
(G, P = 0) is a quasi-Poisson (G × G)-manifold. The diagonal action is the conjugation. The fusion process gives
again the quasi-Poisson G-manifold (G, Pfus =

1
2
∑

a
←−ea ∧

−→εa ).

The fusion also allows us to define a product of quasi-Poisson G-manifolds which will be another quasi-Poisson
G-manifold. If (M1, P1) and (M2, P2) are two quasi-Poisson G-manifolds, a quasi-Poisson (G × G)-manifold is
given by the direct product (M1 × M2, P1 + P2). In order to obtain a quasi-Poisson G-manifold let us consider its
fusion product (M1 × M2, (P1 + P2)fus), denoted by M1 ~ M2. The operation ~ is clearly associative.

Example 6. The fusion product of two copies of the group G, equipped with its canonical quasi-Poisson structures
PG , gives the quasi-Poisson G-manifold(

G ~ G,
1
2

∑
a

←−ea1 ∧
−→εa

1
+

1
2

∑
a

←−ea2 ∧
−→εa

2
−

1
2

∑
a
(←−ea1 −

−→ea
1
) ∧ (←−εa

2
−−→εa

2
)

)
.

More generally, the quasi-Poisson bivector field on Gn obtained by the fusion product of n copies of (G, PG) is

Pn =
1
2

∑
a,i

←−ea
i
∧ −→εa

i
−

1
2

∑
a,i< j

(←−ea
i
−−→ea

i
) ∧ (←−εa

j
−−→εa

j
).

It was observed in [2] that a quasi-Poisson structure on M leads to a Poisson structure on M/G or µ−1(e)/G where
µ : M → G is a G-valued moment map. The following theorem, which is inspired by Theorem 1 in [15], and which
we need later on, generalizes this property. What is notable in our result is that from a quasi-Poisson G-manifold we
construct on a quotient a truthful Poisson structure. It needs the following lemma:

Lemma 7 ([2]). If (M, P) is quasi-Poisson G-manifold and G is equipped with its canonical quasi-Poisson structure
PG , the action G ~ M → M is a quasi-Poisson map.

Theorem 8. Let (M, {· , ·}) be a quasi-Poisson G-manifold and N a submanifold of M which is G-stable. Let
F(M, N )G be the subalgebra of functions on M which are G-invariant on N, F(N )G the algebra of G-invariant
functions on N and ρ : F(M, N )G → F(N )G the restriction map.

Assume that all Hamiltonian vector fields of functions G-invariant on N are tangent to N. In other words, denoting
by I(N ) the ideal of functions on M which vanish on N, we assume that{

F(M, N )G , I(N )
}
|N
= 0

Then there exists a Poisson bracket, {· , ·}N/G , on F(N )G such that for all f1, f2 ∈ F(M, N )G ,

{ρ f1, ρ f2}N/G = ρ { f1, f2} .

Proof. The proof that the {· , ·}N/G is well defined is the same as in the Poisson case, using the preceding lemma (see
the detailed proof in [15]). Let us prove the Jacobi identity for the new bracket {· , ·}N/G . If f1, f2, f3 ∈ F(N )G and
f ′1, f ′2, f ′3 ∈ F(M, N )G such that ρ f ′i = fi , then{

{g1, g2}N/G , g3
}

N/G +	1,2,3 = ρ {{ f1, f2} , f3} +	1,2,3

= 2ρ(φM [ f1, f2, f3])

= 0

because the functions fi are G-invariant on N and the fundamental vector fields, out of which φM is built, annihilate
all G-invariant functions. �

Remark 9. When (M, P) is a quasi-Poisson G-manifold, as soon as there exists1an element r of g ∧ g satisfying
[r, r ] = −φ, the bivector field P + rM is a Poisson structure. This Poisson bivector field and the quasi-Poisson one

1 Such an element r exists for any semi-simple Lie algebra.
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induce, on the quotient by G of a submanifold of M , the same Poisson bracket. However, on the one hand, the quasi-
Poisson bracket is more natural in the sense that it does not involve the choice of any R-matrices. On the other hand,
unlike the quasi-Poisson bracket, the Poisson bracket is, in general, not G-invariant.

3. The loop algebra and its Hamiltonian structures

This section is devoted to the construction of linear and quadratic Poisson structures on the loop algebra

g̃ := g((λ−1)) =

{
X =

q∑
i=−∞

x [i]λi
|q ∈ Z, x [i] ∈ g

}
, (6)

where g is the matrix algebra gl(N ,C). The linear brackets were first introduced by Reyman and Semenov-Tian-
Shansky in [17]. For the quadratic brackets, we follow Li and Parmentier’s construction [14]. In the second part of this
section, we describe rigorously the tensorial formalism for the Lie algebra g = gl(N ,C) and then for the loop algebra
g̃. This formalism is often used in finite dimension; using it in the case of infinite-dimensional Lie algebra requires
some precautions.

3.1. Construction of Poisson structures

Let us start with an associative algebra g that we consider as a Lie algebra with the commutator. Let G be a Lie
group whose Lie algebra is g. We assume that g is equipped with a symmetric, non-degenerate bilinear form 〈·|·〉,
which satisfies, for all x, y, z ∈ g , 〈xy|z〉 = 〈x |yz〉. It follows that 〈·|·〉 is ad-invariant. Denote by F(g) the algebra of
polynomial functions on g generated by the linear maps x 7→ 〈x |y〉, y ∈ g. Let us recall the construction of linear and
quadratic Poisson structures on g. Let R ∈ End(g) be a linear map on g and define, for f, g ∈ F(g),

{ f, g}LR (x) :=
1
2
〈x |[R∇ f (x),∇g(x)] + [∇ f (x), R∇g(x)]〉 , (7)

{ f, g}QR (x) :=
1
2
(〈[x,∇ f (x)]|R(x∇g(x)+∇g(x)x)〉 − 〈[x,∇g(x)]|R(x∇ f (x)+∇ f (x)x)〉), (8)

where ∇ f (x) is defined for any x ∈ g by

∀y ∈ g, 〈∇ f (x)|y〉 =
d
dt |t=0

f (x + t y). (9)

A sufficient condition for R so that {· , ·}LR defines a linear Poisson structure is given by the modified Yang–Baxter
equation

BR(x, y) := [Rx, Ry]− R([Rx, y]+ [x, Ry]) = −c [x, y] ,

where c is a constant (i.e. does not depend on x and y). For {· , ·}QR a stronger condition is needed. According to Li and
Parmentier (see [14]), if R and its skew-symmetric part (with respect to 〈·|·〉) both satisfy the modified Yang–Baxter
equation with the same constant c, then {· , ·}QR is a quadratic Poisson structure on g.

We now turn to the loop algebra g̃ of g , as defined in (6). We equip g̃ with the Lie bracket [x [i]λi , y[ j]λ j
] =

[x [i], y[ j]]λi+ j and with the symmetric, non-degenerate and ad-invariant bilinear form, defined by

〈X |Y 〉
∼
=

∑
i

〈
x [i]|y[−1−i]

〉
,

for X =
∑

i x [i]λi and Y =
∑

j y[ j]λ j in g̃. Let F(g̃) be the algebra of functions on g̃ whose restriction to finite-
dimensional subspaces of g̃ is polynomial into the linear functions X 7→ 〈X |Y 〉

∼
, Y ∈ g̃. This algebra of functions

is chosen so that the biderivations that we are going to study are biderivations of F(g̃). If f ∈ F(g̃) and X ∈ g̃ , the
gradient ∇ f (X) is defined as in formula (9) with the bilinear form 〈·|·〉

∼
. The loop algebra has a natural Lie algebra
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splitting as a vector space direct sum of two Lie subalgebras: g̃ = g[λ] ⊕ λ−1g[[λ−1
]]. Let us denote by R0 the linear

map:

R0 : g̃ = g[λ] ⊕ λ−1g[[λ−1
]] −→ g̃

P(λ)+ λ−1 Q(λ−1) 7−→ P(λ)− λ−1 Q(λ−1)

and for any integer l let Rl : X (λ) 7−→ R0(λ
l X (λ)). The assumptions used to obtain Poisson structures from the

linear maps Rl are the same as in the finite-dimensional case, as is written in the following proposition:

Proposition 10. (1) [17] The formula (7) defines a linear Poisson structure denoted by {· , ·}Ll on the loop algebra g̃
for R = Rl , with l ∈ Z.

(2) The formula (8) defines a quadratic Poisson structure denoted by {· , ·}Q0 on the loop algebra g̃ for R = R0.

Proof. The result follows from

BRl (X, Y ) = BR0(λ
l X (λ), λlY (λ)) = −

[
λl X (λ), λlY (λ)

]
= −λ2l [X, Y ] .

The coefficient λ2l is not a constant but we still have [BR(X, Y ), Z ]+ 	= 0 which directly yields the Jacobi identity
for {· , ·}Ll . For the quadratic case, recall that the linear map R0 is in addition skew-symmetric, and hence it satisfies
the stronger condition needed. �

Remark 11. For l 6= 0, the skew-symmetric part Al of Rl is not a solution of the modified Yang–Baxter equation. For
example, for l = 1, we have BA1(X, Y ) = −λ2 [X, Y ] +

[
x [−1], y[−1]]. As we will see in the next section, {· , ·}Q1 is

not a Poisson bracket.

Remark 12. The adg̃-invariant functions are in involution with respect to both the linear and quadratic brackets {· , ·}Ll
and {· , ·}Ql , for any integer l (i.e., if f1 and f2 are two adg̃-invariant functions on g̃ , then { f1, f2}

L
l = { f1, f2}

Q
l = 0).

The Hamiltonian vector field generated by an adg̃-invariant function h ∈ F(g̃) is in the Lax form, for X in g̃ ,

Xh(X) =
1
2

[Rl(∇h(X)), X ]

for {· , ·}Ll and

Xh(X) = [Rl(X∇h(X)), X ]

for {· , ·}Ql . For the Poisson structures {· , ·}Ll and {· , ·}Q0 , such Hamiltonian vector fields commute because of the
Jacobi identity. We will see in Theorem 19 what happens with the quadratic bivector field {· , ·}Q1 .

For n a positive integer, let g̃n be the subspace g̃n := {
∑n

i=0 x [i]λi
|x [i] ∈ g}. We are going to use the transparent

notation g̃≥0 := {
∑k

i=0 x [i]λi
|k ≥ 0, x [i] ∈ g} and g̃<p := {

∑p−1
i=−∞ x [i]λi

|x [i] ∈ g} for an integer p. In [15], Pedroni
and Vanhaecke have shown that the linear Poisson structures {· , ·}Ll restrict to the subspace g̃n as long as 0 ≤ l ≤ n+1.
The same question arises for the quadratic bivector fields {· , ·}Ql .

Proposition 13. For any n ∈ N∗, the quadratic bivector field {· , ·}Ql restricts to g̃n for l = 0 and l = 1. In particular,
{· , ·}

Q
0 restricts to a Poisson bracket on g̃n .

Proof. To start with, let us show that the quadratic bivector fields {· , ·}Ql , with l ≥ 0, restrict to g̃≥0, i.e., that
Hamiltonian vector fields are tangent to g̃≥0. We just have to compute { f, g}Ql (X) for X ∈ g̃≥0 and f, g two linear
elements of F(g̃), where f vanishes on the subspace g̃≥0. Since the gradients of such functions do not depend on X ,
we use the notation ∇ f instead of ∇ f (X). In view of definition of the bilinear form 〈·|·〉

∼
, we have ∇ f ∈ g̃≥0 and

thus X∇ f and ∇ f X are elements of g̃≥0. Then, using the definitions and properties of Rl and 〈·|·〉
∼

, if l ≥ 0,

{ f, g}Ql (X) = −
1
2

(〈
[X,∇ f ] |λl(X∇g +∇gX)

〉
∼

+

〈
[X,∇g] |λl(X∇ f +∇ f X)

〉
∼

)
= 0.
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Hence, {· , ·}Ql restricts to g̃≥0 for any l ≥ 0. Now, let f, g be linear functions on g̃≥0, where f vanishes on g̃n and
X ∈ g̃n . Then ∇ f ∈ g̃<−(n+1) and thus X∇ f,∇ f X ∈ g̃<−1, and, if l ≤ 1,

{ f, g}Ql (X) =
1
2

(〈
[X,∇ f ] |λl(X∇g +∇gX)

〉
∼

+

〈
[X,∇g] |λl(X∇ f +∇ f X)

〉
∼

)
= 0.

Combining, this shows that the quadratic brackets {· , ·}Q0 and {· , ·}Q1 restrict to g̃n . �

3.2. Tensorial formalism for linear and quadratic brackets

From now on and until the end of Section 6, the Lie algebra g is the matrix algebra g = gl(N ,C), endowed with
the bilinear form 〈x |y〉 = tr(xy) and whose identity element is denoted by Id. The goal of this section is to use
the fact that g is a matrix algebra to express the brackets on g̃ with matrices, more exactly tensorial matrices. This
formalism allows us to simplify the proof of many properties of the Poisson brackets {· , ·}Ll and {· , ·}Q0 and later for
the non-Poisson bracket {· , ·}Q1 . We first write it for g = gl(N ,C) and then adapt it to g̃. The essential point is the
isomorphism between End(g) and g⊗ g:

End(g)
∼
−→ g⊗ g

R 7−→
∑

εa ⊗ R(ea)

(x 7→ 〈r1|x〉 r2)

7−→r1 ⊗ r2

where (ea)a∈I and (εa)a∈I are two dual bases of g (this isomorphism does not depend on the choice of the basis). One
has, if the image of R in g⊗ g is

∑
α rα ⊗ r ′α ,

〈R(x)|y〉 =
∑
α

〈rα|x〉
〈
r ′α|y

〉
.

Let us denote by Ei, j ∈ gl(N ,C) the matrix element with a 1 at position (i, j) and zero elsewhere, and write elements
of g⊗ g as matrices in gl(N 2,C) whose entry at position N (i − 1)+ k, N ( j − 1)+ l is given by

(x ⊗ y)i, j,k,l := xi, j yk,l .

The tensor product g ⊗ g inherits, from the associative algebra of gl(N 2,C), the structure of a Lie algebra and two
g-valued trace maps: tr1(x ⊗ y) := (tr x)y and tr2(x ⊗ y) := (tr y)x .

The linear bracket (7) for a linear map R whose image in g ⊗ g is denoted by r =
∑
α rα ⊗ r ′α reads, for any

f, g ∈ F(g) and x ∈ g ,

{ f, g}LR (x) =
1
2
〈x |[R∇ f (x),∇g(x)] + [∇ f (x), R∇g(x)]〉

=
1
2
〈[∇g(x), x] |R∇ f (x)〉 +

1
2
〈[x,∇ f (x)] |R∇g(x)〉

=
1
2

∑
α

(
〈rα|∇ f (x)〉

〈
r ′α| [∇g(x), x]

〉
+ 〈rα|∇g(x)〉

〈
r ′α| [x,∇ f (x)]

〉)
.

For xi j :=
〈
Ei j | ·

〉
a coordinate function on g , one has ∇xi j (x) = E j i which leads, using the definition of 〈·|·〉, to{

xi j , xkl
}L

R (x) =
1
2

∑
α

((rα)i, j (xr ′α − r ′αx)k,l + (rα)k,l(r ′αx − xr ′α)i, j )

=
1
2

∑
α

(
rα ⊗

[
x, r ′α

]
+
[
r ′α, x

]
⊗ rα

)
i, j,k,l

=
1
2

(
[(Id⊗ x), r ]−

[
(x ⊗ Id), r∗

])
i, j,k,l ,
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where r∗ =
∑
α r ′α ⊗ rα is the image in g⊗ g of the linear adjoint map R∗. All the information of the Poisson bracket

is encoded in the F(g)-valued matrix
{

x ⊗, x
}L

R defined by{
x ⊗, x

}L
R :=

∑
i, j,k,l

{
xi j , xkl

}L
R Ei j ⊗ Ekl

that we simply write as{
x ⊗, x

}L
R =

1
2

(
[Id⊗ x, r ]−

[
x ⊗ Id, r∗

])
. (10)

In the same way, the tensorial matrix for the quadratic bivector field

{ f, g}QR (x) =
1
2
(〈[x,∇ f (x)]|R(x∇g(x)+∇g(x)x)〉 − 〈[x,∇g(x)]|R(x∇ f (x)+∇ f (x)x)〉)

reads {
x ⊗, x

}Q
R =

[
x ⊗ x,

r − r∗

2

]
+ (Id⊗ x)

r + r∗

2
(x ⊗ Id)− (x ⊗ Id)

r + r∗

2
(Id⊗ x). (11)

The computation is left to the reader.
When the linear map R is moreover skew-symmetric, i.e. r∗ is equal to −r , then this formula simplifies to{

x ⊗, x
}Q

R = [x ⊗ x, r ].
We now pass to the case of the loop algebra g̃ of g = gl(N ). A technical difficulty arises considering the tensor

square of g̃. Let us explain our convention used to denote elements of g̃ ⊗ g̃. It will be of practical use to write
x ⊗ yλpµq

∈ g⊗ g[[λ, λ−1, µ, µ−1
]] instead of the more correct notation (xλp)⊗ (yλq). We also need to enlarge the

usual tensor product g̃⊗ g̃ by defining the space T2(g̃):

T2(g̃) :=

{ ∑
−l≤p+q≤l

αp,qλ
pµq
|αp,q ∈ g⊗ g, l ∈ Z

}
.

Similarly, one defines T3(g̃):

T3(g̃) :=

{ ∑
−l≤p+q+r≤l

αp,q,rλ
pµqνr

|αp,q,r ∈ g⊗ g⊗ g, l ∈ Z

}
.

The bilinear form 〈·|·〉
∼

of g̃ leads to a pairing 〈·|·〉
⊗

:

〈·|·〉
⊗
: T2(g̃)× (g̃⊗ g̃)→ C

(x ⊗ yλpµq , z ⊗ tλrµs) 7→
〈
xλp
|zλr 〉

∼

〈
yλq
|tλs 〉

∼
.

We also define the adjoint on T2(g̃) and g̃⊗ g̃ by the formula

(x ⊗ yλpµq)∗ = y ⊗ xλqµp.

Then, for A ∈ T2(g̃) and B ∈ g̃⊗ g̃ : 〈A∗|B∗〉
⊗
= 〈A|B〉

⊗
.

If (ea)a∈I and (εa)a∈I are dual bases of g , then dual bases of g̃ are given by (eaλ
p)a∈I,p∈Z and (εaλ

−p−1)a∈I,p∈Z.
Let E(g̃) be the subspace of End(g̃)

E(g̃) := {R ∈ End(g̃)|∃l ∈ Z,∀p ∈ Z, R(gλp) ⊂ g̃p−l,p+l}.

As for g = gl(N ,C), there exists an injective linear map between E(g̃) and T2(g̃), denoted by β:

β : E(g̃) −→ T2(g̃)

R 7−→
∑

p∈Z,a∈I

εaλ
−p−1

⊗ R(eaµ
p). (12)
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For R ∈ E(g̃), this map satisfies the two following properties:

∀X, Y ∈ g̃, 〈R(X (λ))|Y (λ)〉
∼
= 〈β(R)|X (λ)⊗ Y (µ)〉

⊗

β(R)∗ = β(R∗).

In particular, rl = β(Rl) in T2(g̃) is given by

rl =
∑
p∈Z

i, j∈[[1,N ]]

ηp+l E j iλ
−p−1

⊗ Ei jµ
p+l , (13)

where the coefficient ηp is equal to +1 if p ≥ 0 and −1 if p < 0. The matrix which encodes the Poisson structure is
a matrix in λ and µ:{

X (λ) ⊗, X (µ)
}
=

∑
i, j,k,l∈[[1,N ]]

p,q∈Z

{
xi j
[p], xkl

[q]
}
λpµq Ei j ⊗ Ekl .

Let us introduce t0 =
∑

i, j Ei j ⊗ E j i ∈ g ⊗ g. One computes easily (λ − µ)rl = 2λl t0 and the techniques used for
(10) yield, in this case,{

X (λ) ⊗, X (µ)
}L

l =
1

λ− µ

(
λl
[Id⊗ X (µ), t0] + µl

[X (λ)⊗ Id, t0]
)
.

This formula needs to be understood as follows: for any X ∈ g̃ , the polynomial in λ, λ−1, µ, µ−1, (λl
[Id⊗X (µ), t0]+

µl
[X (λ)⊗ Id, t0]) is divisible by λ− µ. For the quadratic brackets, we have, as in (11),{

X (λ) ⊗, X (µ)
}Q

l =
λl
+ µl

λ− µ
[X (λ)⊗ X (µ), t0] +

λl
− µl

λ− µ
((Id⊗ X (µ))t0(X (λ)⊗ Id)

− (X (λ)⊗ Id)t0(Id⊗ X (µ))) . (14)

In particular{
X (λ) ⊗, X (µ)

}Q
0 =

2
λ− µ

[X (λ)⊗ X (µ), t0].

With this formalism, the skew-symmetry of the bracket {· , ·} reads{
X (λ) ⊗, X (µ)

}
= −t0

{
X (µ) ⊗, X (λ)

}
t0,

Moreover, the Leibniz rule of {· , ·} is written, for any A(λ), B(λ) and C(λ), as{
A(λ) ⊗, B(µ)C(µ)

}
= Id⊗ B(µ)

{
A(λ) ⊗, C(µ)

}
+
{

A(λ) ⊗, B(µ)
}

Id⊗ C(µ).

As a first use of this formalism, let us look at the following proposition. Recall that G is a Lie group integrating the
Lie algebra g.

Proposition 14. The adjoint action of the Lie group G on the loop algebra g̃ defines, for any g ∈ G, a Poisson map
ρg : X (λ) 7→ gX (λ)g−1 on g̃ for the structures {· , ·}Ll , l ∈ Z and {· , ·}Q0 .

Proof. Let us compute the bracket
{

xi j ◦ ρg, xkl ◦ ρg
}L

l (X). It is given by the entry at position i, j, k, l of the tensorial

matrix
{
gX (λ)g−1 ⊗, gX (µ)g−1}L

l . Using the Leibniz rule, with the constant matrices g and g−1,{
gX (λ)g−1 ⊗, gX (µ)g−1

}L

l
= g ⊗ g

{
X (λ) ⊗, X (µ)

}L
l g−1

⊗ g−1

=
1

λ− µ
g ⊗ g(λl [Id⊗ X (µ), t0]+ µl [X (λ)⊗ Id, t0])g−1

⊗ g−1

=
1

λ− µ

(
λl
[
Id⊗ gX (µ)g−1, t0

]
+ µl

[
gX (λ)g−1

⊗ Id, t0
])
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We obtain therefore{
xi j ◦ ρg, xkl ◦ ρg

}L
l (X) =

{
xi j , xkl

}L
l (gXg−1), ∀i, j, k, l ∈ [[1, N ]].

Thus we have
{

xi j ◦ ρg, xkl ◦ ρg
}L

l =
{

xi j , xkl
}L

l ◦ ρg . This argument works for the quadratic bivector fields {· , ·}Ql
as well. �

4. Quasi-Poisson bracket on the loop algebra

We have shown in the previous section that two quadratic structures on the loop algebra g̃ are restricted to the
subspaces g̃n , namely {· , ·}Q0 and {· , ·}Q1 . {· , ·}Q0 is a Poisson structure by Proposition 10, whereas {· , ·}Q1 is not. The
aim of this section is to study this structure {· , ·}Q1 on g̃ , in particular to show that it is a quasi-Poisson bracket for the
conjugation by G = GL(N ,C) on g̃:

ρ : G × g̃→ g̃

(g, X) 7→ gXg−1.

Thus, as suggested before, {· , ·}Q1 will not be a Poisson bracket on g̃ , but it will lead to a Poisson bracket on the
quotient g̃n/G.

For x ∈ g , let us denote by x the fundamental vector field on g̃ for the conjugation. It is given by: x = ←−x − −→x ,
where ←−x and −−→x stand for the fundamental vector fields of the left and the right translations respectively. For
x ∈ g̃ ,←−x and −−→x also designate the two infinitesimal actions of g̃ on itself2: ∀x ∈ g̃ , ∀X ∈ g̃ ,←−x (X) = x X and
−→x (X) = X x . We have to show that

[
{· , ·}

Q
1 , {· , ·}

Q
1

]
S
= φ, where φ is the Cartan 3-tensor of g. For that purpose,

we are going to use the fusion procedure detailed in Proposition 4. If A and S are the skew-symmetric and symmetric
parts of R1, {· , ·}Q1 is also written as

{ f, g}Q1 (X) = { f, g}a (X)+ { f, g}s (X),

where

{ f, g}a (X) = 〈A(∇ f (X)X)|∇g(X)X〉
∼
− 〈A(X∇ f (X))|X∇g(X)〉

∼

{ f, g}s (X) = 〈S(X∇ f (X))|∇g(X)X〉
∼
− 〈S(∇ f (X)X)|X∇g(X)〉

∼
.

The symmetric and skew-symmetric parts A and S are given for xλk
∈ g̃ by

A(xλk) =

∣∣∣∣∣∣
xλk+1 if k + 1 > 0
−xλk+1 if k + 1 < 0
0 if k = −1

and S(xλk) = xδk,−1. (15)

The idea is to show that {· , ·}a is a quasi-Poisson bracket on the (G × G)-space g̃ and to see then that {· , ·}Q1 is the
quasi-Poisson bracket on the G-space g̃ , which is the fusion of {· , ·}a . Consider the left (G × G)-action on the loop
algebra g̃:

G × G × g̃→ g̃

(g1, g2, X) 7→ g1 Xg−1
2 .

The Lie algebra of the product G × G is the direct sum g ⊕ g. The fundamental vector field on g̃ corresponding to
the action of G × G is given, for x1

+ y2
∈ g ⊕ g , by ̂x1 + y2 = ←−x − −→y . We denote by φ2 the Cartan 3-tensor

of the Lie algebra g ⊕ g : φ2 = (φ, φ). We have to show that {· , ·}a is a (G × G)-invariant bivector field and that[
{· , ·}a , {· , ·}a

]
S = φ̂2.

2 Even if we often use capital letters to designate elements of g̃ , we choose the lower case here in order to preserve homogeneity for infinitesimal
actions.
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Let a := β(A) be the image of A in T2(g̃) via the map β defined by the formula (12). Then {· , ·}a =
1
2 (
←−a −−→a ).

Explicitly, we have, in view of (13) or (15),

a =
∑

1≤i, j≤N
p>0

E j iλ
−p
∧ Ei jµ

p
=

∑
1≤i, j≤N

p>0

E j iλ
−p
⊗ Ei jµ

p
−

∑
1≤i, j≤N

p>0

Ei jλ
p
⊗ E j iµ

−p.

A short computation gives quickly the following equalities:

Lemma 15. The 2-tensor a satisfies, ∀x ∈ g , [a, x] = 0 and 1
4 [a, a] = φ − φ∼, where φ∼ ∈ T3(g̃) denotes the

Cartan 3-tensor of the Lie algebra g̃ equipped with the ad-invariant bilinear form 〈xλp
|yλq〉′

∼
= δp,−q tr(xy).

Proof. Let x ∈ g and p ∈ N∗. The bracket
[∑

1≤i, j≤n E j iλ
−p
∧ Ei jµ

p, x
]

reads∑
1≤i, j≤n

[
E j iλ

−p
∧ Ei jµ

p, x
]
=

∑
1≤i, j≤n

[
E j i , x

]
λ−p
∧ Ei jµ

p
+

∑
1≤i, j≤n

E j iλ
−p
∧
[
Ei j , x

]
µp

=

∑
1≤i, j,k,l≤n

〈
Ekl |

[
E j i , x

]〉
Elkλ

−p
∧ Ei jµ

p

+

∑
1≤i, j,k,l≤n

〈
Ekl |

[
Ei j , x

]〉
E j iλ

−p
∧ Elkµ

p

= 0.

Hence, [a, x] =
∑

p>0

[∑
1≤i, j≤n E j iλ

−p
∧ Ei jµ

p, x
]
= 0. Denoting by (ea)a∈I = (Ei jλ

p) 1≤i, j≤N
p>0

the basis of g̃>0,

(εa)a∈I = (E j iλ
p) 1≤i, j≤N

p<0
its dual basis in g̃<0 with respect to the bilinear form 〈·|·〉′

∼
and (hc)c∈J an orthogonal basis

of g , one develops the bracket [a, a] on
∧3 g̃ through

[a, a] =
∑

a,b∈I

εa ∧ [ea, εb] ∧ eb + [εa, εb] ∧ ea ∧ eb − εb ∧ [εa, eb] ∧ ea + εa ∧ εb ∧ [ea, eb]

= −

∑
a,b,c∈I

+〈ec| [εa, εb]〉′
∼
εc ∧ ea ∧ eb + 〈εc| [ea, eb]〉′

∼
ec ∧ εa ∧ εb

− 2
∑

a,b∈I,c∈J

〈hc| [ea, εb]〉′
∼

hc ∧ εa ∧ eb.

In addition, the Cartan 3-tensors φ∼ of g̃ and φ of g read

φ∼ =
1
4

∑
a,b,c

〈ea | [εb, εc]〉′
∼
εa ∧ eb ∧ ec + 〈εa | [eb, ec]〉′

∼
ea ∧ εb ∧ εc

+
1
2

∑
a,b∈I,c∈J

〈εa | [eb, hc]〉′
∼

ea ∧ εb ∧ hc +
1

12

∑
a,b,c∈J

〈ha | [hb, hc]〉′
∼

ha ∧ hb ∧ hc

φ =
1
12

∑
a,b,c∈J

〈ha | [hb, hc]〉 ha ∧ hb ∧ hc =
1

12

∑
a,b,c∈J

〈ha | [hb, hc]〉′
∼

ha ∧ hb ∧ hc.

Hence we have the expected formula: 1
4 [a, a] = φ − φ∼. �

Remark 16. Note that the bilinear form that appears naturally in Lemma 15 is 〈·|·〉′
∼

, rather than 〈·|·〉
∼

, which was used
to define the brackets {· , ·}Q1 and {· , ·}a and the 2-tensor a. Actually, for proving that g̃ is a quasi-Poisson (G × G)-
manifold and G-manifold respectively, the only bilinear form which plays a role is the one on the Lie algebra g of the
Lie group G. Indeed we see in the following proposition that, when we consider the bivector field 1

4 (
←−a − −→a ), we

just need the fact that φ∼ is an adg̃-invariant 3-tensor.

Proposition 17. The bivector field {· , ·}a is a quasi-Poisson structure on the (G × G)-space g̃.

Proof. To show that {· , ·}a is (G×G)-invariant, we just need to compute its Lie derivative with respect to fundamental
vector fields. Let x1

+ y2
= (x, y) ∈ g⊕g. We have L

x̂1+y2 {· , ·}a =
1
2

[
←−a −−→a ,←−x −−→y

]
S =
←−−−[a, x]−−−−→[a, y] = 0.
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Now let us compute the Schouten bracket: 1
4

([
←−a −−→a ,←−a −−→a

]
S

)
=

1
4 (
←−−−[a, a]−−−−→[a, a] ) =←−φ −−→φ −←−φ∼+

−→
φ ∼.

Since φ∼ is adg̃-invariant, we have←−φ∼ −
−→
φ ∼ = 0 and thus 1

4

([
←−a −−→a ,←−a −−→a

]
S

)
= φ̂2. �

Before stating the theorem, let us interpose the following lemma which gives a major property of the bivector field
{· , ·}

Q
1 . We thank Camille Laurent for this observation.

Lemma 18. Let (M, {· , ·}) be a quasi-Poisson G-manifold. Let f1, f2 ∈ F(M) be two functions on M, such that

(1) f1 ∈ F(M)G ,
(2) { f1, f2} = 0.

Then the Hamiltonian vector fields X f1 and X f2 commute:[
X f1 ,X f2

]
= 0.

Proof. We just need the graded Jacobi identity of the Schouten bracket and the definition of a quasi-Poisson bivector
field {· , ·} = π .[

X f1 ,X f2

]
=
[
[π, f1]S , [π, f2]S

]
S

=
1
2

[[
[π, π]S , f1

]
S , f2

]
S +

[
π,
[
[π, f1]S , f2

]
S

]
S

=
1
2

[[
φg, f1

]
S
, f2

]
S
+ [π, { f1, f2}]S

= 0. �

Using Proposition 4, we obtain the announced result:

Theorem 19. The bivector field {· , ·}Q1 is a quasi-Poisson structure on the G-space g̃. For this bracket, the
Hamiltonian vectors fields of adg̃-invariant functions commute.

Proof. The bivector field obtained on g̃ by the fusion of the (G×G)-action is {· , ·}a− ψ̂ , where ψ = 1
2
∑

E1
j i ∧ E2

i j .

ψ̂ =
1
2

∑
Ê1

j i ∧ Ê2
i j = −

1
2

∑
←−−E j i ∧

−−→Ei j = −{· , ·}s .

Thus the fusion of the (G × G)-action gives the bivector field {· , ·}a + {· , ·}s = {· , ·}
Q
1 .

For the second part of the theorem, recall that we have seen in Section 3 that the adg̃-invariant functions are in
involution for the quadratic brackets {· , ·}Ql , l ∈ Z. Lemma 18 allows us to conclude. �

Remark 20. It is possible to show directly that {· , ·}Q1 is a quasi-Poisson bracket, i.e., without using the fusion
Proposition and calculation of the Schouten bracket. It suffices to compute the Jacobiator with the decomposition
{· , ·}

Q
1 = {· , ·}a + {· , ·}s . We will not do this computation here, but just outline how to do this. For f1, f2, f3, three

linear functions on g̃ , and X in g̃ , denote by L1, L2, L3 their gradients at X . One computes

∇ { f2, f3}a (X) = A(L2 X)L3 − A(L3 X)L2 + L2 A(X L3)− L3 A(X L2),

∇ { f2, f3}s (X) = S(X L2)L3 − S(X L3)L2 + L2S(L3 X)− L3S(L2 X).

One should simply calculate the four double brackets
{

f1, { f2, f3}a,s
}

a,s (X), in order to write{
f1, { f2, f3}

Q
1

}Q

1
(X)+	1,2,3 =

{
f1, { f2, f3}a

}
a (X)+	1,2,3+

{
f1, { f2, f3}s

}
s (X)+	1,2,3

+
{

f1, { f2, f3}s
}

a (X)+	1,2,3+
{

f1, { f2, f3}a
}

s (X)+	1,2,3

= 〈L1 X |BA(L2 X, L3 X)〉
∼
− 〈X L1|BA(X L2, X L3)〉∼

−

〈
X L1|BA(L2 X, L3 X)−

1
2

B ′R1
(L2 X, L3 X)+

1
2

B ′R1
(L3 X, L2 X)

〉
∼

+	1,2,3

+

〈
L1 X |BA(X L2, X L3)−

1
2

B ′R1
(X L2, X L3)+

1
2

B ′R1
(X L3, X L2)

〉
∼

+	1,2,3,
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where, for Y, Z ∈ g̃ ,

BR1(Y, Z) = [R1Y, R1 Z ]− R1([R1Y, Z ]+ [Y, R1 Z ]),
B ′R1

(Y, Z) = R∗1 [R1Y, Z ]− R∗1
[
Y, R∗1 Z

]
−
[
R1Y, R∗1 Z

]
.

The computation of BA and B ′R1
gives{

f1, { f2, f3}
Q
1

}Q

1
(X)+	1,2,3 =

〈
(L1 X)[−1]

|

[
(L2 X)[−1], (L3 X)[−1]

]〉
−

〈
(X L1)

[−1]
|

[
(X L2)

[−1], (X L3)
[−1]

]〉
−

〈
(X L1)

[−1]
|

[
(L2 X)[−1], (L3 X)[−1]

]〉
+	1,2,3

+

〈
(L1 X)[−1]

|

[
(X L2)

[−1], (X L3)
[−1]

]〉
+	1,2,3

= 2φ[ f1, f2, f3](X).

Remark 21. We have seen in Proposition 13 that the bivector field {· , ·}Q1 is restricted to the sub-G-space g̃n for each
positive integer n. Hence g̃n equipped with {· , ·}Q1 is a quasi-Poisson G-manifold.

5. Two examples of quasi-Poisson reduction

In this section, we apply Theorem 8 to the two main examples of the quasi-Poisson G-manifold that we have
constructed: (Gn, Pn) in Section 2 and (g̃n, {· , ·}

Q
1 ) in Section 4.

5.1. Poisson structure on a quotient of Gn

We fix some integer n ∈ N and we use the shorthand G for the linear group GL(N ,C). Consider in Gn the subset

N :=
{
(M1, . . . ,Mn) ∈ Gn

|M1 . . .Mn = Id
}
.

N is clearly a G-stable submanifold of Gn with respect to g · (M1, . . . ,Mn) = (gM1g−1, . . . , gMng−1). By
Example 6, Gn equipped with the biderivation

{· , ·}n = Pn =
1
2

∑
a,i

←−ea
i
∧ −→εa

i
−

1
2

∑
a,i< j

(←−ea
i
−−→ea

i
) ∧ (←−εa

j
−−→εa

j
)

is a quasi-Poisson G-manifold.
In [2], the authors define the notion of G-valued moment map for a quasi-Poisson G-manifold. Then they prove

that the quasi-Poisson structure induces a Poisson structure on quotients by a Hamiltonian reduction. Thus, they show
that the quotient Gn//G inherits a Poisson structure from {· , ·}n . In addition, they claim that this Poisson structure is
the same as what can be found in [4,8,3]. Here, we are going to use a simpler argument to prove that {· , ·}n induces a
Poisson structure on Gn//G. It is an example of the use of Theorem 8 and of the tensorial formalism.

By Theorem 8, to yield a Poisson structure on the quotient N /G, we just have to show that the Hamiltonian vector
fields associated with functions on Gn , which are G-invariant on N , are tangent to N . Let us check this point.

Since G is reductive, the algebra F(Gn,N )G of polynomial functions on Gn which are G-invariant on N is
generated by the algebra F(Gn)G of G-invariant functions on Gn and the ideal I(N ) of functions on Gn which
vanish on the submanifold N (see for example the chapter Reductive groups in [18]). In addition, according to
Procesi [16, Theorem 1.3],

F(Gn)G = 〈tr(Mα1 . . .Mαp )|p ∈ N, (α1, . . . , αp) ∈ [[1, n ]]p〉

and, by definition of N ,

I(N ) = 〈(M1 . . .Mn − Id)kl |k, l ∈ [[1, N ]]〉.

Thus, in Theorem 8, the assumption
{
F(Gn,N )G , I(N )

}
|N
= 0 is satisfied if and only if{

M1 . . .Mn
⊗, M1 . . .Mn

}
n = 0{

tr(Mα1 . . .Mαp ),M1 . . .Mn
}

n = 0 in N
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for all p ∈ N, (α1, . . . , αp) ∈ [[1, n ]]p. Using the tensorial formalism, we get{
Mi
⊗, Mi

}
n = −(Mi ⊗ Id)t0(Id⊗ Mi )+ (Id⊗ Mi )t0(Mi ⊗ Id),{

Mi
⊗, M j

}
n = (Mi ⊗ Id)t0(Id⊗ M j )+ (Id⊗ M j )t0(Mi ⊗ Id)

− t0(Mi ⊗ M j )− (Mi ⊗ M j )t0 if i < j, (16)

where t0 is again defined by t0 =
∑

k,l∈Z Ek,l ⊗ El,k . The linearity of tr gives{
tr(Mα1 . . .Mαp ),M1 . . .Mn

}
n = tr1

{
Mα1 . . .Mαp

⊗, M1 . . .Mn
}

n .

On the other hand, the Leibniz rule allows us to write, using the notation Ai := Mα1 . . .Mαi , Bi := Mαi . . .Mαp ,
S j := M1 . . .M j and T j := M j . . .Mn ,{

Mα1 . . .Mαp
⊗, M1 . . .Mn

}
n =

∑
i∈[[1,p]]
j∈[[1,n]]

(Ai−1 ⊗ S j−1)
{

Mαi
⊗, M j

}
n (Bi+1 ⊗ T j+1).

Combining this with formulas (16), one first obtains

{
Mα1 . . .Mαp

⊗, M1 . . .Mn
}

n =

p∑
i=1

αi−1∑
j=1

(
(Ai−1 ⊗ S j−1)t0(Bi ⊗ T j )+ (Ai ⊗ S j )t0(Bi+1 ⊗ T j+1)

− (Ai−1 ⊗ S j )t0(Bi ⊗ T j+1)− (Ai ⊗ S j−1)t0(Bi+1 ⊗ T j )
)

+
(
(Ai−1 ⊗ Sαi )t0(Bi ⊗ Tαi+1)− (Ai ⊗ Sαi−1)t0(Bi+1 ⊗ Tαi )

)
+

n∑
j=αi+1

(
(−Ai−1 ⊗ S j−1)t0(Bi ⊗ T j )− (Ai ⊗ S j )t0(Bi+1 ⊗ T j+1)

+ (Ai−1 ⊗ S j )t0(Bi ⊗ T j+1)+ (Ai ⊗ S j−1)t0(Bi+1 ⊗ T j )
)
.

Changing the index j with a shift, a great number of terms in these sums disappear. Recall also that, by definition of
Tk and Sk , and using the fact that we are on N , we have S0 = T1 = Sn = Tn+1 = Id. Hence{

Mα1 . . .Mαp
⊗, M1 . . .Mn

}
n

= 2
p∑

i=1
((Ai−1 ⊗ Id)t0(Bi ⊗ Id)− (Ai ⊗ Id)t0(Bi+1 ⊗ Id))

+

p∑
i=1

(
(Ai ⊗ Sαi )t0(Bi+1 ⊗ Tαi+1)− (Ai−1 ⊗ Sαi+1)t0(Bi ⊗ Tαi )

)
= 2

(
t0(B1 ⊗ Id)− (Ap ⊗ Id)t0

)
+

p∑
i=1

(
(Ai−1 ⊗ Sαi−1)(Mαi ⊗ Mαi t0 − t0 Mαi ⊗ Mαi )(Bi+1 ⊗ Tαi+1)

)
.

= 2
[
t0,Mα1 . . .Mαp ⊗ Id

]
.

Taking tr1 and Mα1 . . .Mαp = M1 . . .Mn on N gives the expected result: Hamiltonian vector fields associated
with functions G-invariant on N are tangent to the sub-G-manifold N so that we can use Theorem 8: the quotient
Gn//G := N /G inherits a Poisson bracket. This structure is the same as those constructed in [4] and [8].

5.2. Poisson structure on a quotient of g̃n

We propose here a second example of reduction with Theorem 8. This quotient will play an important role in the
construction of an integrable system on the moduli space Gn//G.

Let A be the affine G-invariant subspace

A :=

{
X = Idλn

+

n−1∑
i=1

x [i]λi
+ Id|x [i] ∈ g

}
⊂ g̃n . (17)
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Since G is reductive, the algebra F(g̃n,A )G of polynomial functions on g̃n which are G-invariant on A is generated
by the algebra

F(g̃n)
G
= 〈tr(x [α1] . . . x [αp])|p ∈ N, (α1, . . . , αp) ∈ [[0, n ]]p〉

of G-invariant functions on g̃n , and the ideal

I(A ) = 〈x [0]i j − δi j , x [n]i j − δi j |i, j ∈ [[1, N ]]〉,

of null-functions on A . Thus we just need to show the following equalities on A , for any p ∈ N and (α1, . . . , αp) ∈

[[0, n ]]p:{
tr(x [α1] . . . x [αp]), x [0]

}Q

1
= 0,

{
x [0] ⊗, x [0]

}Q

1
= 0,

{
x [n] ⊗, x [0]

}Q

1
= 0,{

tr(x [α1] . . . x [αp]), x [n]
}Q

1
= 0,

{
x [0] ⊗, x [n]

}Q

1
= 0,

{
x [n] ⊗, x [n]

}Q

1
= 0.

Recall from (14) the tensorial form of the quasi-Poisson bracket {· , ·}Q1 :{
X (λ) ⊗, X (µ)

}Q
1 =

λ+ µ

λ− µ
[X (λ)⊗ X (µ), t0] + (Id⊗ X (µ))t0(X (λ)⊗ Id)

− (X (λ)⊗ Id)t0(Id⊗ X (µ)),

and the equality in g̃: (A⊗B)t0 = t0(B⊗ A). This implies, taking µ = 0 in the previous expression, for some X in A ,{
X (λ) ⊗, x [0]

}Q

1
=
{

X (λ) ⊗, X (0)
}Q

1

= [X (λ)⊗ x [0], t0] + (Id⊗ x [0])t0(X (λ)⊗ Id)− (X (λ)⊗ Id)t0(Id⊗ x [0])

= 0.

In particular, for any integer α ∈ [[0, n]], we have
{

x [α] ⊗, x [0]
}Q

1 = 0 on A . In the same way, we compute the tensorial

bracket
{

X (λ) ⊗, x [n]
}Q

1 by taking a limit as µ tends to∞, for some X in A :{
X (λ) ⊗, x [n]

}Q

1
=

1
µn

{
X (λ) ⊗, lim

µ→∞
X (µ)

}Q

1

= −[X (λ)⊗ x [n], t0] + (Id⊗ x [n])t0(X (λ)⊗ Id)− (X (λ)⊗ Id)t0(Id⊗ x [n])

= −2 [X (λ)⊗ Id, t0] .

Thus
{

x [0] ⊗, x [n]
}Q

1 =
{

x [n] ⊗, x [n]
}Q

1 = 0 on A and{
tr(x [α1] . . . x [αp]), x [n]

}Q

1 |A
= −2

p∑
i=1

tr1((x [α1] . . . x [αi−1] ⊗ Id)
[
x [αi ] ⊗ Id, t0

]
(x [αi+1] . . . x [αp] ⊗ Id))|A

= −2
p∑

i=1

(x [αi+1] . . . x [αp]x [α1] . . . x [αi ] − x [αi ] . . . x [αp]x [α1] . . . x [αi−1])|A

= 0.

Hence
{
F(g̃n,A )G , I(A )

}Q
1 |A

= 0. We have thus shown the following proposition:

Proposition 22. The quotient A /G inherits a Poisson structure from the quadratic quasi-Poisson bracket {· , ·}Q1
defined on g̃n .

6. An integrable system on the moduli space

Before constructing an integrable system on A /G and M , it is advisable to specify what we mean by an integrable
system. In this paper, we consider integrability in the sense of Liouville. The definition is the following one:



1648 A. Le Blanc / Journal of Geometry and Physics 57 (2007) 1631–1652

Definition 23. Let (M, {· , ·}) be a Poisson manifold, with algebra of functions F(M). Let 2r be the maximal rank of
the Poisson structure on M . A subalgebra F ∈ F(M) is called an integrable system on M if it satisfies

(1) F is involutive (i.e., ∀ f1, f2 ∈ F, { f1, f2} = 0);
(2) F is generated by dim M − r independent functions on M .

The goal of this section is to construct an integrable system on the regular part of the moduli space M = Gn//G. To
this end, we use the equivariant transfer map

T : Gn
−→ g̃n

(M1, . . . ,Mn) 7−→ (λM1 + Id) . . . (λMn + Id),

which induces a transfer map on the quotients: TG : Gn//G 7→ A /G, where A was defined in (17). Let us still denote
by {· , ·}n and {· , ·}Q1 the Poisson structures obtained by reduction in Section 5 on Gn//G and A /G respectively. When
X belongs to A , the determinant det(yId− X (λ)) is a polynomial in λ and y. Let F be the subalgebra of functions on
A /G thus defined:

F := 〈tr X k(a) | k ∈ N, a ∈ C〉 =

〈
ϕp,q | det(yId− X (λ)) =

∑
p,q
ϕp,q(X)λp yq

〉
.

We will show that F is an integrable system on A /G and that T ∗G F is an integrable system on the moduli space Gn//G.
We will do this by first showing that the functions are in involution and then computing the number of independent
functions.

6.1. An involutive family of functions

First of all, F is a subalgebra of adg̃-invariant functions on g̃n . Hence, according to the Remark 12 and considering
the construction of the Poisson structure {· , ·}Q1 on A /G (Proposition 22), F is an involutive subalgebra of F(A /G).
In order to deduce that T ∗F is involutive in F(Gn//G), we prove the following proposition:

Proposition 24. The transfer map T is a morphism of quasi-Poisson G-manifolds between (Gn, {· , ·}n) and
(g̃n, {· , ·}

Q
1 ). It induces then a Poisson morphism TG : Gn//G 7→ A /G.

Proof. The result can be shown computing the image of {· , ·}n by the transfer map T , and recognizing that it is
precisely {· , ·}Q1 (see [13]). However, a less tiresome calculation in the tensorial formalism, inspired by Alekseev’s
computation in [3], gives immediately the result. Recall from (16) that the bracket {· , ·}n is given by{

Mi
⊗, Mi

}
n = −(Mi ⊗ Id)t0(Id⊗ Mi )+ (Id⊗ Mi )t0(Mi ⊗ Id),{

Mi
⊗, M j

}
n = (Mi ⊗ Id)t0(Id⊗ M j )+ (Id⊗ M j )t0(Mi ⊗ Id)− t0(Mi ⊗ M j )− (Mi ⊗ M j )t0 if i < j.

Observe that, denoting by Mi (λ) the factor λMi + Id, the tensorial polynomial brackets
{

Mi (λ)
⊗, M j (µ)

}
n satisfy

(λ− µ)
{

Mi (λ)
⊗, Mi (µ)

}
n = (λ+ µ) [Mi (λ)⊗ Mi (µ), t0]+ (λ− µ)((Id⊗ Mi (µ))t0(Mi (λ)⊗ Id)

− (Mi (λ)⊗ Id)t0(Id⊗ Mi (µ))),{
Mi (λ)

⊗, M j (µ)
}

n = (Mi (λ)⊗ Id)t0(Id⊗ M j (µ))− t0(Mi (λ)⊗ M j (µ))

+ (Id⊗ M j (µ))t0(Mi (λ)⊗ Id)− (Mi (λ)⊗ M j (µ))t0 if i < j,

so that, using the Leibniz identity, the bracket of the product T (λ) satisfies{
T (λ) ⊗, T (µ)

}
n =

λ+ µ

λ− µ
[T (λ)⊗T (µ), t0]

+ (Id⊗T (µ))t0(T (λ)⊗ Id)− (T (λ)⊗ Id)t0(Id⊗T (µ)).

One recognizes the bracket {· , ·}Q1 of g̃n , given by the formula (14). �

Since the subalgebra F is involutive on (A /G, {· , ·}Q1 ), one deduces that the subalgebra T ∗G F is involutive on
(Gn//G, {· , ·}n).
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6.2. How many functions?

Beauville showed in 1990 that the natural functions trX k(a) on the loop algebra constitute an integrable system on
a quotient of g̃n [5]. More precisely, here is his statement:

Let Vd :=
{

P(x, y) = yN
+ s1(x)yN−1

+ · · · + sN (x)|∀i, deg si ≤ id
}

and Vd be the set of elements P in Vd
whose spectral curve CP := {(x, y)|P(x, y) = 0} is smooth. Let hd be the map

hd : Md → Vd

X (λ) 7→ det(yId− X (λ))

where Md is the subset of g̃d of polynomial matrices whose characteristic polynomial is in Vd . This map is invariant
under conjugation. Beauville denotes by Qd the quotient Md/G and Hd : Qd → Vd the quotient map. He shows that
the Poisson structures induced on Qd by the classical linear Poisson structures give, for the functions tr X k(a), the
Hamiltonian vector fields

Yk,a : Ẋ(λ) = c(a)

[
X (λ), X k(a)

]
x − a

,

where c(a) is polynomial in a, depending on the chosen Poisson structure. He proves then the following theorem:

Theorem 25 ([5]). The Hamiltonian system Hd : Qd → Vd is algebraic completely integrable with respect to the
linear Poisson brackets.

Indeed, he shows that the fiber of Hd over a generic point P ∈ Vd is isomorphic to an affine open subset of the Jacobian
of the spectral curve CP . By dimensional consideration, he deduces, from this fact, that Hd defines 1

2 N (d N + d + 2)
independent functions on Qd . Since these functions are in involution for the Poisson structure that he considers, the
Hamiltonian system is Liouville integrable. In addition, the theorem claims that the Hamiltonian vector fields span,
on the generic fiber, which is a complex torus, the space of linear vector fields.

Since we just want to count the number of independent functions defined by F on A /G, we only need the
independence of the functions on Qd (with d = n − 2). Let us consider the following commutative diagram:

X (λ)∈A Vn 3 P(λ, y)

X (λ)− (λn
+ 1) Id

λ
∈ g̃n−2

1
λN C[λ, y] 3

1
λN P(λ, λy + λn

+ 1)

-hn

?

α

?

β

-
hn−2

In particular, β(hn(A )) ⊂ Vn−2. Moreover α is a G-equivariant diffeomorphism from A to g̃n−2 so that we still
have this diagram on the quotients with the maps Hn and Hn−2, replacing hn and hn−2. According to Beauville,
the map Hn−2 defines a family of 1

2 N ((n − 2)N + n) independent functions on g̃n−2/G. Hence, Hn defines
s′ ≥ 1

2 N ((n − 2)N + n) independent functions on A /G. Among this functions on A /G, precisely c′ := Nn − 1 are
coming from det and are thus Casimir functions for our Poisson bracket {· , ·}Q1 on A /G.

Let us denote by m the dimension and by 2r the maximal rank of the Poisson manifold A /G. Let c = m − 2r .
Any involutive algebra of functions on A /G contains at most r + c independent functions. Hence, s′ ≤ r + c. On the
other hand, m = (n − 2)N 2

+ 1 and we have 2(s′ − c′)+ c′ = N 2(n − 2)+ nN − nN + 1 = m. Hence, s′ − c′ = r ,
c′ = c and Hn defines an integrable system on A /G. This leads to the corollary:

Corollary 26. The Hamiltonian system Hn : A /G → Vn is Liouville integrable with respect to the Poisson structure
{· , ·}

Q
1 .

With some extra effort, one shows that it is actually also an algebraic completely integrable system, but we will not
develop this here. In addition, we have the following proposition:
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Proposition 27. The transfer map T is a local diffeomorphism on an open dense subset of Gn .

Proof. Since T is a polynomial map, we just have to prove that the differential of T is an isomorphism at a well-
chosen point of Gn . Let M = (M1, . . . ,Mn) be an n-tuple of diagonal matrices: Mi = diag(λi,k, 1 ≤ k ≤ N ), for
1 ≤ i ≤ n. Assume that these eigenvalues λi,k are two by two distinct, and hence so are the polynomials λi,kλ + 1.
Let Y be an element of the tangent space of G at M . Then the differential of T at M is written as

dT (M) · H =
n∑

i=1

→∏
j<i

(λM j + Id)λHi

→∏
j>i

(λM j + Id),

where
∏
→ is the ordered product. The coefficient (k, l), with 1 ≤ k, l ≤ N , of this term is

(dT (M) · H)kl =

n∑
i=1

∏
j<i

(λλ j,k + 1)λH kl
i

∏
j>i

(λλ j,l + 1).

Since the polynomials λi,kλ + 1 are mutually prime, a linear equality (dT (M) · H)kl = 0 leads to a polynomial
equality in λ whose evaluations in the −λ−1

i,k and −λ−1
i,l yield H kl

j = 0 for all j ∈ [[0, n]]. Hence dT (M) · H = 0
leads to H = 0. Thus dT (M) is an isomorphism and, by analyticity, the transfer map T is a local diffeomorphism
on an open dense subset of Gn . �

Hence, we interpret the transfer map T as a morphism towards a well-known system on the loop algebra:

Theorem 28. The Hamiltonian system (Gn//G, {· , ·}n ,T ∗F) is a Liouville integrable system. As a consequence, in
view of Proposition 24 and Corollary 26, the transfer map

T : (Gn//G, {· , ·}n ,T
∗F) −→ (A /G, {· , ·}Q1 ,F)

(M1, . . . ,Mn) 7−→ (λM1 + Id) . . . (λMn + Id)

is a morphism of integrable systems.

Proof. The two quotients Gn//G and A /G have the same dimension, namely (n−2)N 2
+1 and, since the transfer map

is a local diffeomorphism, independence of involutive functions is preserved by the pull-back T ∗. Thus dim T ∗F =
dim F. According to [19, Proposition 2.17], since T is a Poisson map, Rk(Gn//G) ≥ Rk(A /G) and since, moreover,
T is a local diffeomorphism, T ∗Cas(A /G) ⊂ Cas(Gn//G). It follows that Rk(Gn//G) = Rk(A /G) and the
diffeomorphism T carries the integrable system from A /G to Gn//G. �

7. The quadratic structure of the Toda lattice: A quasi-Poisson approach

In this last part, we propose a theorem generalizing the construction of a quasi-Poisson structure on the loop algebra
(Section 4) to a more general Lie algebra g of an associative algebra, equipped with a symmetric, non-degenerate, ad-
invariant bilinear form 〈·|·〉, which satisfies, for all x, y, z ∈ g , 〈xy|z〉 = 〈x |yz〉. Our precise assumption, through
this section, is that g admits a Lie algebra splitting as a vector space direct sum of three Lie algebras of associative
subalgebras:

g = g+ ⊕ g0 ⊕ g−,

where g0 is finite-dimensional and such that, with respect to 〈·|·〉, g+ and g− are two dual spaces and g∗0 = g0. Let
P+, P− and P0 be the linear projectors on g+, g− and g0 respectively and R := P+ + P0 − P−. Let G0 be a Lie
group whose Lie algebra is g0. Let F(g) be the algebra of functions on g which are polynomial in the linear maps
x 7→ 〈x |y〉, y ∈ g. On this algebra, the gradient is well defined:

∀y ∈ g, 〈∇ f (x)|y〉 =
d
dt |t=0

f (x + t y).

Theorem 29. The bivector field {· , ·}QR , defined on F(g) by, ∀ f1, f2 ∈ F(g), ∀x ∈ g ,

{ f1, f2}
Q
R (x) :=

1
2
(〈[x,∇ f1(x)]|R(x∇ f2(x)+∇ f2(x)x)〉 − 〈[x,∇ f2(x)]|R(x∇ f1(x)+∇ f1(x)x)〉)
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is a quasi-Poisson structure on the G0-manifold g. For this structure adg-invariant functions are in involution and the
associated Hamiltonian vector fields commute.

Proof. The proof is the same as in the loop algebra case, computing the Jacobiator of {· , ·}QR or using the tensor form

of R and its skew-symmetric part in T2(g) :=
{∑

i, j ci, j ei ⊗ e j |ci, j ∈ C
}

, where (ei )i∈I is a basis of g. �

According to the theorem, we obtain a family of functions on g , which are in involution with respect to the quasi-
Poisson structure. In combination with the following proposition, this leads in many cases to enough independent
involutive functions on a quotient to insure integrability.

Proposition 30. The subspaces g0 ⊕ g+ and g+ are two quasi-Poisson G0-submanifolds (i.e., the inclusions are
quasi-Poisson maps).

Proof. Let f1 ∈ F(g) be null on the subspace g0 ⊕ g+ and x ∈ g0 ⊕ g+. Since g∗± = g∓ and g∗0 = g0,
we have ∇ f1(x) ∈ g+. Moreover these assumptions also imply that g+g0 ⊂ g+, so that ∇ f1(x)x ∈ g+ and
R(∇ f1(x)x) = ∇ f1(x)x (the same holds for R∗ and with x∇ f1(x)). Thus we have, ∀ f2 ∈ F(g),

{ f1, f2}
Q
R (x) =

1
2
(〈−[x,∇ f1(x)]|x∇ f2(x)+∇ f2(x)x〉 − 〈[x,∇ f2(x)]|x∇ f1(x)+∇ f1(x)x〉)

= −〈x∇ f1(x)|x∇ f2(x)〉 + 〈∇ f1(x)x |∇ f2(x)x〉

= 0.

The same argument holds for the case of g+. �

As an illustration, let us apply the Theorem 29 within the framework of the symmetric Toda matrix. The space
which interests us is the set M of symmetric matrices A = [Ai, j ]i, j such that ∀i, j , if |i − j | > 1 then Ai, j = 0:

M :=





b1 a1 0 . . . . . . 0

a1 b2 a2
...

0 a2 b3
. . .

...
. . .

. . .
. . .

...
...

. . .
. . . aN−1

0 . . . . . . aN−1 bN



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ai , b j ∈ C


In order to define a quadratic bivector field on this space, we first consider the Lie algebra splitting of the Lie algebra
g of the associative algebra gl(N ,C):

g = u⊕ d⊕ l,

where u (resp. l) is the subspace of strictly upper (resp. strictly lower) triangular matrices and d is the subspace of
diagonal matrices. When g is equipped with the bilinear form 〈A|B〉 = tr(AB) the assumptions of Theorem 29 are
satisfied. Thus, writing R = Pu + Pd − Pl, the formula

{ f1, f2}
Q
R (x) :=

1
2
(〈[x,∇ f1(x)]|R(x∇ f2(x)+∇ f2(x)x)〉 − 〈[x,∇ f2(x)]|R(x∇ f1(x)+∇ f1(x)x)〉)

defines a quasi-Poisson structure on the D-manifold g , where D is the group of invertible diagonal N × N matrices
and acts on g by conjugation. Since this group is commutative, the Cartan 3-form φd vanishes and the quasi-
Poisson bracket {· , ·}QR is in fact a Poisson bracket. If (xi j )1≤i, j≤N denote the coordinate functions on g , one has,
∀i, j, k, l ∈ [[1, N ]],{

xi j , xkl
}Q

R = (ε jl + εik)xk j xil + (δil − δ jk)xi j xkl

where εi j = 1 if i > j , 0 if i = j and −1 if i < j . These formulas allow us to show very simply that the subspace D3

of tridiagonal matrices is a Poisson submanifold of g , just computing the brackets
{

xi j , xkl
}Q

R where |i − j | ≥ 2. On
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the other hand M is not a Poisson submanifold of g. However, the following lemma due to Fernandes and Vanhaecke
authorizes us to equip M with an inherited Poisson structure.

Lemma 31 ([7]). Let (M, {· , ·}) be a Poisson manifold equipped with an involution σ which is a Poisson map. Let
N be the submanifold of M consisting of the fixed points of σ . Denote by ι the inclusion map ι : M ↪→ N. Then N
carries a unique Poisson structure {· , ·}N such that

ι∗ { f1, f2} =
{
ι∗ f1, ι

∗ f2
}

N

for all f1, f2 ∈ F(M) that are σ -invariant.

In our case, transposition is a Poisson involution admitting M as a set of fixed points. The inherited structure is given
by

{ai , ai−1}
Q
R = −

1
2

ai ai−1 {ai , bi }
Q
R = −ai bi {bi , bi−1}

Q
R = −2a2

i−1

{ai , ai+1}
Q
R =

1
2

ai ai+1 {ai , bi+1}
Q
R = ai bi+1 {bi , bi+1}

Q
R = 2a2

i

(all other brackets being null). We obtain, using our formalism, the same quadratic Poisson bracket for the Toda lattice
as Damianou in [6].
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